Enantioselective Synthesis of Cyclic Enol Ethers and All-Carbon Quaternary Stereogenic Centers Through Catalytic Asymmetric Ring-Closing Metathesis Ai-Lan Lee, Steven J. Malcomson, Alessandra Puglisi, Richard R. Schrock, and Amir H. Hoveyda J. Am. Chem. Soc., ASAP, ja058428r > Adam Hoye Wipf Group 4-1-06 # Ring Closing Metathesis (RCM) # Asymmetric RCM # -Chiral substrate, achiral catalyst (common) -Achiral substrate, chiral catalyst #### Catalytic Kinetic Resolution: #### Catalytic Asymmetric Synthesis: Schrock, R. R.; Hoveyda, A. H.; Angew. Chem. Int. Ed., 2003, 42, 4592 #### Enol Ethers in RCM #### - Poor initiation with Ru-based catalysts observed in some cases Schrock, R. R.; Hoveyda, A. H.; Angew. Chem. Int. Ed., 2003, 42, 4592 #### Enol Ether Metathesis in Natural Product Synthesis Trilobolide, Nortrilobide, Thapsivillosin F Oliver, S. F.; Högenauer, K.; Simic, O.; Antonello, A.; Smith, M. D.; Ley, S. V.; Angew. Chem. Int. Ed. 2003, 42, 5996 Kin, D.-S.; Smith, A. B.; Org. Lett. 2005, 7, 3247 ## Preliminary Enol Ether RCM Reactions 2 ## Catalyst Screening - -Ru-based complexes did not promote RCM of desired enol ether substrates - -For various olefin substitutions (1,1 and 1,2), only **4a** exhibited repetitive catalytic activity (i.e. it was always active) - -Optical purity of RCM reactions changes dramatically between catalysts. Thus, these reactions are case specific, and the availability of structurally distinct catalysts is important in reaction optimization # Enantioselective Synthesis by Mo-catalyzed ARCM | entry | substrate | product | catalyst;
mol % | solvent | time (h);
temp (°C) | conv (%); ^b
yield (%) ^c | ee (%) ^d | |-------------|-----------------|----------|--------------------|-------------------------------|------------------------|--|---------------------| | 1 | Me O Me | Me Me Me | 4a ; 10 | Et ₂ O | 6; 22 | 90; 70 ^e | 90 | | 2 | Me 10 Me | Me H 14 | 4a ; 5 | <i>n-</i> pentane | 24; 60 | >98;>98 | 83 | | 3 | Me Me | Me O Me | 4a ; 20 | C ₆ H ₆ | 24; 22 | 80; 40 ^e | 90 | | 4
n-hexy | A A A | n-hexyl | 3b ; 10 | C ₆ H ₆ | 20; 60 ^f | 86; 80 | 41 | | 5 | exyl 19 n-hexyl | 18 T | 3a ; 20 | C ₆ H ₆ | 19; 22 | 90; 80 | 62 | # Quaternary Carbon Stereogenic Center Formation | entry | substrate | product | | catalyst;
mol % | time (h);
temp (°C) | conv (%); ^b
yield (%) ^c | ee (%) ^d | |-------|--------------------------------------|--------------------------|--|------------------------------|----------------------------|--|---------------------| | 1 | Me Me | Me Cy Me |) | 4a ; 15 | 15; 22 | 85; 84 | 23 | | 2 3 4 | Me Me | Me Ar 24 | a Ar = C ₆ H ₅
b Ar = <i>p</i> -OMeC ₆ H ₆
c Ar = <i>p</i> -BrC ₆ H ₄ | 4a; 15
4 4a; 15
4a; 15 | 20; 22
19; 22
18; 22 | >98; 96
>98; 97
91; 91 | 87
85
83 | | 5 | Me Me CO ₂ Me 25 | Me CO ₂ Me Me | • | 4a ; 15 | 17; 22 | >98; 94 | 94 | | 6 | Me Me NHCO ₂ Bn 27 | Me NHCO ₂ Bn | e | 4a ; 15 | 19; 22 | >98; 97 | 54 | "...the first instances of efficient enantioselective synthesis of all-carbon quaternary stereogenic centers by catalytic asymmetric olefin metathesis." # Functionalization of Cyclic Enol Ethers - ACRCM has been used to efficiently form enantiomerically enriched cyclic enol ethers having quaternary stereocenters using Mobased catalysts - Synthetic utility of this process remains to be seen due to the substrate dependant nature of the process and need for structurally distinct chiral catalysts