Enantioselective Synthesis of Cyclic Enol Ethers and All-Carbon Quaternary Stereogenic Centers Through Catalytic Asymmetric Ring-Closing Metathesis

Ai-Lan Lee, Steven J. Malcomson, Alessandra Puglisi, Richard R. Schrock, and Amir H. Hoveyda J. Am. Chem. Soc., ASAP, ja058428r

> Adam Hoye Wipf Group 4-1-06

Ring Closing Metathesis (RCM)

Asymmetric RCM

-Chiral substrate, achiral catalyst (common)

-Achiral substrate, chiral catalyst

Catalytic Kinetic Resolution:

Catalytic Asymmetric Synthesis:

Schrock, R. R.; Hoveyda, A. H.; Angew. Chem. Int. Ed., 2003, 42, 4592

Enol Ethers in RCM

- Poor initiation with Ru-based catalysts observed in some cases

Schrock, R. R.; Hoveyda, A. H.; Angew. Chem. Int. Ed., 2003, 42, 4592

Enol Ether Metathesis in Natural Product Synthesis

Trilobolide, Nortrilobide, Thapsivillosin F

Oliver, S. F.; Högenauer, K.; Simic, O.; Antonello, A.; Smith, M. D.; Ley, S. V.; Angew. Chem. Int. Ed. 2003, 42, 5996

Kin, D.-S.; Smith, A. B.; Org. Lett. 2005, 7, 3247

Preliminary Enol Ether RCM Reactions

2

Catalyst Screening

- -Ru-based complexes did not promote RCM of desired enol ether substrates
- -For various olefin substitutions (1,1 and 1,2), only **4a** exhibited repetitive catalytic activity (i.e. it was always active)
- -Optical purity of RCM reactions changes dramatically between catalysts. Thus, these reactions are case specific, and the availability of structurally distinct catalysts is important in reaction optimization

Enantioselective Synthesis by Mo-catalyzed ARCM

entry	substrate	product	catalyst; mol %	solvent	time (h); temp (°C)	conv (%); ^b yield (%) ^c	ee (%) ^d
1	Me O Me	Me Me Me	4a ; 10	Et ₂ O	6; 22	90; 70 ^e	90
2	Me 10 Me	Me H 14	4a ; 5	<i>n-</i> pentane	24; 60	>98;>98	83
3	Me Me	Me O Me	4a ; 20	C ₆ H ₆	24; 22	80; 40 ^e	90
4 n-hexy	A A A	n-hexyl	3b ; 10	C ₆ H ₆	20; 60 ^f	86; 80	41
5	exyl 19 n-hexyl	18 T	3a ; 20	C ₆ H ₆	19; 22	90; 80	62

Quaternary Carbon Stereogenic Center Formation

entry	substrate	product		catalyst; mol %	time (h); temp (°C)	conv (%); ^b yield (%) ^c	ee (%) ^d
1	Me Me	Me Cy Me)	4a ; 15	15; 22	85; 84	23
2 3 4	Me Me	Me Ar 24	a Ar = C ₆ H ₅ b Ar = <i>p</i> -OMeC ₆ H ₆ c Ar = <i>p</i> -BrC ₆ H ₄	4a; 15 4 4a; 15 4a; 15	20; 22 19; 22 18; 22	>98; 96 >98; 97 91; 91	87 85 83
5	Me Me CO ₂ Me 25	Me CO ₂ Me Me	•	4a ; 15	17; 22	>98; 94	94
6	Me Me NHCO ₂ Bn 27	Me NHCO ₂ Bn	e	4a ; 15	19; 22	>98; 97	54

"...the first instances of efficient enantioselective synthesis of all-carbon quaternary stereogenic centers by catalytic asymmetric olefin metathesis."

Functionalization of Cyclic Enol Ethers

- ACRCM has been used to efficiently form enantiomerically enriched cyclic enol ethers having quaternary stereocenters using Mobased catalysts
- Synthetic utility of this process remains to be seen due to the substrate dependant nature of the process and need for structurally distinct chiral catalysts